Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.193
1.
Immun Inflamm Dis ; 12(5): e1077, 2024 May.
Article En | MEDLINE | ID: mdl-38722267

BACKGROUND: Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS: The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS: TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION: TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.


Inflammatory Bowel Diseases , Isoflavones , Lipopolysaccharides , MAP Kinase Signaling System , Macrophages , Animals , Mice , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , MAP Kinase Signaling System/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Disease Models, Animal , Dextran Sulfate/toxicity , Inflammation/drug therapy , Inflammation/immunology , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism
2.
PLoS One ; 19(5): e0302015, 2024.
Article En | MEDLINE | ID: mdl-38728332

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
3.
Braz J Med Biol Res ; 57: e13474, 2024.
Article En | MEDLINE | ID: mdl-38716985

Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.


Autophagy , Osteoclasts , Osteogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RANK Ligand , TOR Serine-Threonine Kinases , Ubiquinone , Animals , Mice , Autophagy/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Osteoclasts/drug effects , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
4.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38713636

Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail ("I-tail") gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.


Breast Neoplasms , Receptors, Prolactin , Humans , Receptors, Prolactin/metabolism , Receptors, Prolactin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , MAP Kinase Signaling System/drug effects , Cell Proliferation/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , ras Proteins/metabolism , ras Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Signal Transduction/drug effects , Prolactin/metabolism , Prolactin/pharmacology
5.
Gynecol Endocrinol ; 40(1): 2351525, 2024 Dec.
Article En | MEDLINE | ID: mdl-38726683

OBJECTIVE: Stable luteal cell function is an important prerequisite for reproductive ability and embryonic development. However, luteal insufficiency seriously harms couples who have the desire to have a pregnancy, and the most important thing is that there is no complete solution. In addition, Vaspin has been shown to have regulatory effects on luteal cells, but the complex mechanisms involved have not been fully elucidated. Therefore, this study aimed to explore the effect of Vaspin on rat luteal cells and its mechanism. METHODS: Granulosa lutein cells separated from the ovary of female rats were incubated for 24h with gradient concentrations of Vaspin, and granulosa lutein cells incubated with 0.5% bovine serum albumin were used as controls. The proliferation, apoptosis, angiogenesis, progesterone (P4) and estradiol (E2) were detected by CCK-8, Anneixn-FITC/PI staining, angiogenesis experiment and ELISA. Western blot was applied to observe the expression levels of proteins related to cell proliferation, apoptosis, angiogenesis and MEK/MAPK signaling pathway. RESULTS: Compared with the Control group, Vaspin could significantly up-regulate the proliferation of granulosa lutein cells and reduce the apoptosis. Moreover, Vaspin promoted the angiogenesis of granulosa lutein cells and the production of P4 and E2 in a concentration-dependent manner. Furthermore, Vaspin up-regulated the CyclinD1, CyclinB1, Bcl2, VEGFA and FGF-2 expression in granulosa lutein cells, and down-regulated the level of Bax. Also, Vaspin increased the p-MEK1 and p-p38 levels. CONCLUSION: Vaspin can up-regulate the proliferation and steroidogenesis of rat luteal cells and reduce apoptosis, which may be related to the influence of MEK/MAPK activity.


Apoptosis , Cell Proliferation , Luteal Cells , Progesterone , Serpins , Animals , Female , Cell Proliferation/drug effects , Serpins/metabolism , Serpins/pharmacology , Rats , Luteal Cells/drug effects , Luteal Cells/metabolism , Apoptosis/drug effects , Progesterone/pharmacology , Estradiol/pharmacology , Cells, Cultured , Rats, Sprague-Dawley , MAP Kinase Signaling System/drug effects , Neovascularization, Physiologic/drug effects
6.
Sci Signal ; 17(836): eadd5073, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743809

The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.


MAP Kinase Signaling System , NF-kappa B , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , MAP Kinase Signaling System/drug effects , Animals , Cell Line, Tumor , Mutation , Mice , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/drug therapy , Melanoma/pathology , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude
7.
CNS Neurosci Ther ; 30(5): e14749, 2024 05.
Article En | MEDLINE | ID: mdl-38739004

AIMS: A bone-invasive pituitary adenoma exhibits aggressive behavior, leading to a worse prognosis. We have found that TNF-α promotes bone invasion by facilitating the differentiation of osteoclasts, however, before bone-invasive pituitary adenoma invades bone tissue, it needs to penetrate the dura mater, and this mechanism is not yet clear. METHODS: We performed transcriptome microarrays on specimens of bone-invasive pituitary adenomas (BIPAs) and noninvasive pituitary adenomas (NIPAs) and conducted differential expressed gene analysis and enrichment analysis. We altered the expression of TNF-α through plasmids, then validated the effects of TNF-α on GH3 cells and verified the efficacy of the TNF-α inhibitor SPD304. Finally, the effects of TNF-α were validated in in vivo experiments. RESULTS: Pathway act work showed that the MAPK pathway was significantly implicated in the pathway network. The expression of TNF-α, MMP9, and p-p38 is higher in BIPAs than in NIPAs. Overexpression of TNF-α elevated the expression of MAPK pathway proteins and MMP9 in GH3 cells, as well as promoted proliferation, migration, and invasion of GH3 cells. Flow cytometry indicated that TNF-α overexpression increased the G2 phase ratio in GH3 cells and inhibited apoptosis. The expression of MMP9 was reduced after blocking the P38 MAPK pathway; overexpression of MMP9 promoted invasion of GH3 cells. In vivo experiments confirm that the TNF-α overexpression group has larger tumor volumes. SPD304 was able to suppress the effects caused by TNF-α overexpression. CONCLUSION: Bone-invasive pituitary adenoma secretes higher levels of TNF-α, which then acts on itself in an autocrine manner, activating the MAPK pathway and promoting the expression of MMP9, thereby accelerating the membrane invasion process. SPD304 significantly inhibits the effect of TNF-α and may be applied in the clinical treatment of bone-invasive pituitary adenoma.


Adenoma , MAP Kinase Signaling System , Matrix Metalloproteinase 9 , Neoplasm Invasiveness , Pituitary Neoplasms , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Humans , Adenoma/pathology , Adenoma/metabolism , Animals , Matrix Metalloproteinase 9/metabolism , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Male , Cell Line, Tumor , Female , Mice , Mice, Nude , Autocrine Communication/physiology , Autocrine Communication/drug effects , Middle Aged , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Adult , Rats , Cell Movement/drug effects , Cell Movement/physiology , Signal Transduction/physiology , Signal Transduction/drug effects
8.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Article En | MEDLINE | ID: mdl-38716368

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Drugs, Chinese Herbal , Ferroptosis , MAP Kinase Signaling System , Rats, Sprague-Dawley , Reperfusion Injury , Ferroptosis/drug effects , Animals , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Male , MAP Kinase Signaling System/drug effects , Drugs, Chinese Herbal/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology
9.
PLoS One ; 19(5): e0302906, 2024.
Article En | MEDLINE | ID: mdl-38718039

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Cartilage, Articular , Chondrocytes , Interleukin-1beta , NF-kappa B , Osteoarthritis , Plant Extracts , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Rats , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Plant Extracts/pharmacology , Prunus/chemistry , Rats, Sprague-Dawley , Down-Regulation/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Collagen Type II/metabolism , Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Fruit/chemistry , Aggrecans/metabolism , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Cells, Cultured , Male , MAP Kinase Signaling System/drug effects
10.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727958

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Stem Cells/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Cell Survival/genetics , Cell Survival/drug effects , Signal Transduction/genetics , Cells, Cultured
11.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732212

The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.


Cell Differentiation , Cell Movement , Keratinocytes , Magnesium , Matrix Metalloproteinase 7 , Wound Healing , Wound Healing/drug effects , Humans , Cell Movement/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Differentiation/drug effects , Magnesium/pharmacology , Magnesium/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 7/genetics , Skin/metabolism , Skin/drug effects , Skin/injuries , MAP Kinase Signaling System/drug effects , Cell Line , Epidermis/drug effects , Epidermis/metabolism , Magnesium Chloride/pharmacology
12.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732267

Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.


Biological Products , Bone Remodeling , Osteoporosis , Humans , Bone Remodeling/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Osteoblasts/drug effects , Osteoblasts/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , MAP Kinase Signaling System/drug effects , Gastrointestinal Microbiome/drug effects , Osteoclasts/metabolism , Osteoclasts/drug effects , Animals
13.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731489

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Gallic Acid , Lipoproteins, LDL , Receptors, LDL , Humans , Gallic Acid/pharmacology , Receptors, LDL/metabolism , Hep G2 Cells , Lipoproteins, LDL/metabolism , ErbB Receptors/metabolism , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
14.
Int Immunopharmacol ; 133: 112094, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652969

Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.


Anti-Bacterial Agents , Anti-Inflammatory Agents , Periodontitis , Porphyromonas gingivalis , Animals , Porphyromonas gingivalis/drug effects , Periodontitis/drug therapy , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , MAP Kinase Signaling System/drug effects , Periodontal Ligament/drug effects , Periodontal Ligament/pathology , Disease Models, Animal , Mice, Inbred C57BL , Stem Cells/drug effects , Male , Periodontium/drug effects , Periodontium/microbiology , Periodontium/pathology
15.
J Hazard Mater ; 471: 134371, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38657513

4-NP (4-nonylphenol), a prevalent environmental endocrine disruptor with estrogenic properties, is commonly detected in drinking water and food sources. It poses a significant risk of endocrine disruption, thereby influencing the onset and progression of diverse diseases, including tumorigenesis. However, its specific impact on cervical cancer remains to be fully elucidated. Our study focused on the biological effects of sustained exposure to low-dose 4-NP on human normal cervical epithelial cells (HcerEpic). After a continuous 30-week exposure to 4-NP, the treated cells exhibited a significant malignant transformation, whereas the solvent control group showed limited malignant phenotypes. Subsequent analyses of the metabolomic profiles of the transformed cells unveiled marked irregularities in glutathione metabolism and unsaturated fatty acid metabolism. Analyses of transcriptomic profiles revealed significant activation of the MAPK signaling pathway and suppression of ferroptosis processes in these cells. Furthermore, the expression of MT2A was significantly upregulated following 4-NP exposure. Knockdown of MT2A restored the aberrant activation of the MAPK signaling pathway, elevated antioxidant capacity, ferroptosis inhibition, and ultimately the development of malignant phenotypes that induced by 4-NP in the transformed cells. Mechanistically, MT2A increased cellular antioxidant capabilities and facilitated the removal of toxic iron ions by enhancing the phosphorylation of ERK1/2 and JNK MAPK pathways. The administration of activators and inhibitors of the MAPK pathway confirmed that the MAPK pathway mediated the 4-NP-induced suppression of ferroptosis and, ultimately, the malignant transformation of cervical epithelial cells. Overall, our findings elucidated a dynamic molecular transformation induced by prolonged exposure to 4-NP, and delineated comprehensive biological perspectives underlying 4-NP-induced cervical carcinogenesis. This offers novel theoretical underpinnings for the assessment of the carcinogenic risks associated with 4-NP.


Ferroptosis , Phenols , Uterine Cervical Neoplasms , Ferroptosis/drug effects , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Phenols/toxicity , MAP Kinase Signaling System/drug effects , Endocrine Disruptors/toxicity , Cell Line , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mitogen-Activated Protein Kinases/metabolism
16.
Mol Immunol ; 170: 144-155, 2024 Jun.
Article En | MEDLINE | ID: mdl-38669759

OBJECTIVE: Dihydroartemisinin (DHA) plays a very important role in various diseases. However, the precise involvement of DHA in systemic lupus erythematosus (SLE), relation to the equilibrium between M1 and M2 cells, remains uncertain. Therefore, we aimed to investigate the role of DHA in SLE and its effect on the M1/M2 cells balance. METHODS: SLE mice model was established by pristane induction. Flow cytometry was employed to measure the abundance of M1 and M2 cells within the peripheral blood of individuals diagnosed with SLE. The concentrations of various cytokines, namely TNF-α, IL-1ß, IL-4, IL-6, and IL-10, within the serum of SLE patients or SLE mice were assessed via ELISA. Immunofluorescence staining was utilized to detect the deposition of IgG and complement C3 in renal tissues of the mice. We conducted immunohistochemistry analysis to assess the expression levels of Collagen-I, a collagen protein, and α-SMA, a fibrosis marker protein, in the renal tissues of mice. Hematoxylin-eosin staining, Masson's trichrome staining, and Periodic acid Schiff staining were used to examine histological alterations. In this study, we employed qPCR and western blot techniques to assess the expression levels of key molecular markers, namely CD80 and CD86 for M1 cells, as well as CD206 and Arg-1 for M2 cells, within kidney tissue. Additionally, we investigated the involvement of the MAPK signaling pathway. The Venny 2.1 online software tool was employed to identify shared drug-disease targets, and subsequently, the Cytoscape 3.9.2 software was utilized to construct the "disease-target-ingredient" network diagram. Protein-protein interactions of the target proteins were analyzed using the String database, and the network proteins underwent enrichment analysis for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS: The results showed that an increase in M1 cells and a decrease in M2 cells within the peripheral blood of individuals diagnosed with SLE. Further analysis revealed that prednisone (PDN) combined with DHA can alleviate kidney damage and regulate the balance of M1 and M2 cells in both glomerular mesangial cells (GMC) and kidney. The MAPK signaling pathway was found to be involved in SLE kidney damage and M1/M2 balance in the kidney. Furthermore, PDN and/or DHA were found to inhibit the MAPK signaling pathway in GMC and kidney. CONCLUSION: We demonstrated that PDN combined with DHA attenuates SLE by regulating M1/M2 balance through MAPK signaling pathway. These findings propose that the combination of PDN and DHA could serve as a promising therapeutic strategy for SLE, as it has the potential to mitigate kidney damage and reinstate the equilibrium of M1 and M2 cells.


Artemisinins , Lupus Erythematosus, Systemic , MAP Kinase Signaling System , Prednisone , Lupus Erythematosus, Systemic/drug therapy , Animals , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mice , MAP Kinase Signaling System/drug effects , Prednisone/pharmacology , Prednisone/therapeutic use , Humans , Female , Cytokines/metabolism , Disease Models, Animal , Drug Therapy, Combination , Macrophages/drug effects , Macrophages/metabolism
17.
Brain Res ; 1834: 148907, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570153

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.


Brain Injuries, Traumatic , Microglia , Neuroinflammatory Diseases , Syk Kinase , Triggering Receptor Expressed on Myeloid Cells-1 , p38 Mitogen-Activated Protein Kinases , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Microglia/metabolism , Microglia/drug effects , Syk Kinase/metabolism , Syk Kinase/antagonists & inhibitors , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Signal Transduction/drug effects , Brain Edema/metabolism , Brain Edema/drug therapy , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL
18.
Eur J Pharmacol ; 973: 176562, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38588767

In recent years, immunosuppressants have shown significant success in the treatment of autoimmune diseases. Therefore, there is an urgent need to develop additional immunosuppressants that offer more options for patients. Toosendanin has been shown to have immunosuppressive activity in vitro as well as effects on autoimmune hepatitis (AIH) in vivo. Toosendanin did not induce apoptosis in activated T-cells and affect the survival rate of naive T-cells. Toosendanin did not affect the expression of CD25 or secretion of IL-2 by activated T-cells, and not affect the expression of IL-4 and INF-γ. Toosendanin did not affect the phosphorylation of STAT5, ERK, AKT, P70S6K. However, toosendanin inhibited proliferation of anti-CD3/anti-CD28 mAbs-activated T-cells with IC50 of (10 ± 2.02) nM. Toosendanin arrested the cell cycle in the G0/G1 phase, significantly inhibited IL-6 and IL-17A secretion, promoted IL-10 expression, and inhibited the P38 MAPK pathway. Finally, toosendanin significantly alleviated ConA-induced AIH in mice. In Summary, toosendanin exhibited immunosuppressive activity in vivo and in vitro. Toosendanin inhibits the proliferation of activated T-cells through the P38 MAPK signalling pathway, significantly suppresses the expression of inflammatory factors, enhances the expression of anti-inflammatory factors, and effectively alleviates ConA-induced AIH in mice, suggesting that toosendanin may be a lead compound for the development of novel immunomodulatory agents with improved efficacy and reduced toxicity.


Cell Proliferation , Drugs, Chinese Herbal , T-Lymphocytes , Triterpenes , p38 Mitogen-Activated Protein Kinases , Animals , Cell Proliferation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Drugs, Chinese Herbal/pharmacology , MAP Kinase Signaling System/drug effects , Lymphocyte Activation/drug effects , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/pathology , Cytokines/metabolism , Immunosuppressive Agents/pharmacology , Mice, Inbred BALB C , Female
19.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Article En | MEDLINE | ID: mdl-38618651

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


CD36 Antigens , Chylomicrons , Diet, High-Fat , Linoleic Acids, Conjugated , MAP Kinase Signaling System , Mice, Inbred C57BL , Animals , CD36 Antigens/metabolism , CD36 Antigens/genetics , Linoleic Acids, Conjugated/pharmacology , Mice , Male , Chylomicrons/metabolism , MAP Kinase Signaling System/drug effects , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Acyltransferases/metabolism , Acyltransferases/genetics , Intestinal Absorption/drug effects
20.
Ecotoxicol Environ Saf ; 276: 116303, 2024 May.
Article En | MEDLINE | ID: mdl-38599157

Certain insecticides are known to have estrogenic effects by activating estrogen receptors through genomic transcription. This has led researchers to associate specific insecticide use with an increased breast cancer risk. However, it is unclear if estrogen receptor-dependent pathways are the only way in which these compounds induce carcinogenic effects. The objective of this study was to determine the impact of the pyrethroid insecticide permethrin on the growth of estrogen receptor negative breast cancer cells MDA-MB-231. Using tandem mass spectrometric techniques, the effect of permethrin on cellular protein expression was investigated, and gene ontology and pathway function enrichment analyses were performed on the deregulated proteins. Finally, molecular docking simulations of permethrin with the candidate target protein was performed and the functionality of the protein was confirmed through gene knockdown experiments. Our findings demonstrate that exposure to 10-40 µM permethrin for 48 h enhanced cell proliferation and cell cycle progression in MDA-MB-231. We observed deregulated expression in 83 upregulated proteins and 34 downregulated proteins due to permethrin exposure. These deregulated proteins are primarily linked to transmembrane signaling and chemical carcinogenesis. Molecular docking simulations revealed that the overexpressed transmembrane signaling protein, G protein-coupled receptor 39 (GPR39), has the potential to bind to permethrin. Knockdown of GPR39 partially impeded permethrin-induced cellular proliferation and altered the expression of proliferation marker protein PCNA and cell cycle-associated protein cyclin D1 via the ERK1/2 signaling pathway. These findings offer novel evidence for permethrin as an environmental breast cancer risk factor, displaying its potential to impact breast cancer cell proliferation via an estrogen receptor-independent pathway.


Cell Proliferation , Estrogen Receptor alpha , Insecticides , Molecular Docking Simulation , Permethrin , Receptors, G-Protein-Coupled , Permethrin/toxicity , Humans , Cell Proliferation/drug effects , Insecticides/toxicity , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , MAP Kinase Signaling System/drug effects , Breast Neoplasms/pathology , Female , Signal Transduction/drug effects
...